\qquad _Hour \qquad

HW 10.7 Circles in the Coordinate Plane

In Exercises 1-4, write the standard equation of the circle with the given center and radius.
1.

3. a circle with center $(0,0)$ and radius 8
2.

4. a circle with center $(0,-5)$ and radius 2

In Exercises 5 and 6, use the given information to write the standard equation of the circle.
5. The center is $(0,0)$, and a point on the circle is $(3,-4)$.
6. The center is $(3,-2)$, and a point on the circle is $(23,19)$.

In Exercises 7-9, match each graph with its equation.
7.

8.

9.

A. $x^{2}+y^{2}=4$
B. $(x-3)^{2}+y^{2}=4$
C. $(x+3)^{2}+y^{2}=4$
10. The equation of a circle is $x^{2}+y^{2}-6 y+9=4$. Find the center and radius of the circle. Then graph the circle.
11. Prove or disprove that the point $(-3,3)$ lies on the circle centered at the origin with radius 4.
12. You are using a math software program to design a pattern for an Olympic flag. In addition to the dimensions shown in the diagram, the distance between the outer edges any two adjacent rings in the same row is 3 inches.
a. Use the given dimensions to write equations representing the outer circles of the five rings. Use inches as units in a coordinate plane with the lower left corner of the flag on the origin.
b. Each ring is 3 inches thick. Explain how you can adjust the equations of the outer circles to write equations representing the inner circles.

