
Graph  $\triangle ABC$  with vertices A(3, 2), B(6, 3), and C(7, 1) and its image after the glide reflection.

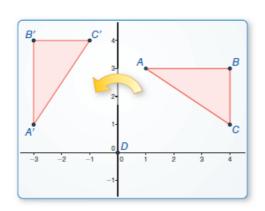
**Translation:**  $(x, y) \rightarrow (x - 12, y)$ 

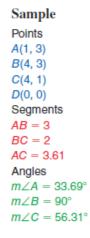
**Reflection:** in the *x*-axis



## State the name of the property.

**1.** For any segment AB,  $\overline{AB} \cong \overline{AB}$ .


**2.** If  $\angle A \cong \angle B$ , then  $\angle B \cong \angle A$ .


# **Essential Question**

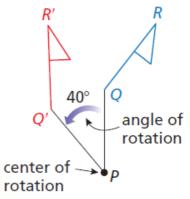
How can you rotate a figure in a coordinate plane?

#### Work with a partner.

- **a.** Use dynamic geometry software to draw any triangle and label it  $\triangle ABC$ .
- **b.** Rotate the triangle 90° counterclockwise about the origin to form  $\land A'B'C'$ .
- **c.** What is the relationship between the coordinates of the vertices of  $\triangle ABC$  and those of  $\triangle A'B'C'$ ?
- **d.** What do you observe about the side lengths and angle measures of the two triangles?






# G Core Concept

#### **Rotations**


A **rotation** is a transformation in which a figure is turned about a fixed point called the **center of rotation**. Rays drawn from the center of rotation to a point and its image form the **angle of rotation**.

A rotation about a point P through an angle of  $x^{\circ}$  maps every point Q in the plane to a point Q' so that one of the following properties is true.

- If Q is not the center of rotation P, then QP = Q'P and  $m\angle QPQ' = x^{\circ}$ , or
- If Q is the center of rotation P, then Q = Q'.



Draw a 120° rotation of  $\triangle ABC$  about point *P*.

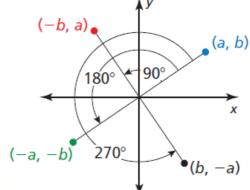


# G Core Concept

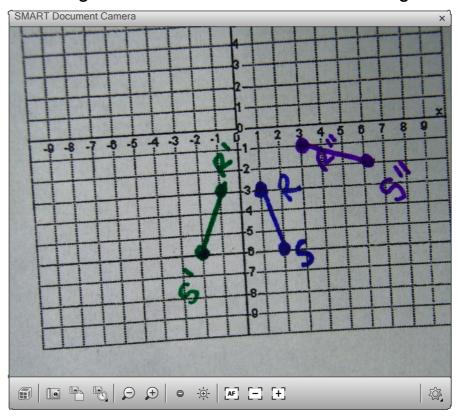
### **Coordinate Rules for Rotations about the Origin**

When a point (a, b) is rotated counterclockwise about the origin, the following are true.

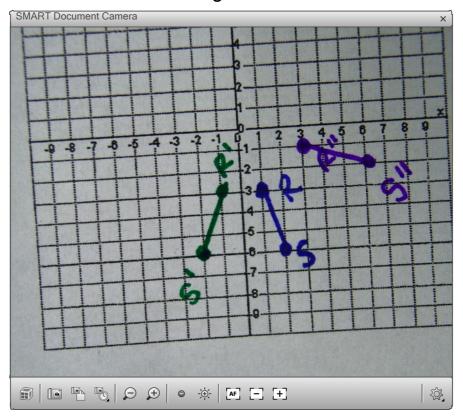
For a rotation of 90°,


$$(a, b) \rightarrow (-b, a).$$

For a rotation of 180°,


$$(a, b) \rightarrow (-a, -b).$$

For a rotation of 270°,


$$(a, b) \rightarrow (b, -a).$$



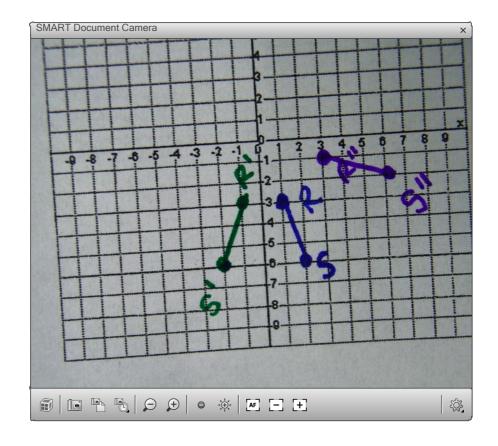
Graph quadrilateral *RSTU* with vertices R(3, 1), S(5, 1), T(5, -3), and U(2, -1) and its image after a 270° rotation about the origin.



Graph  $\triangle JKL$  with vertices J(3, 0), K(4, 3), and L(6, 0) and its image after a 90° rotation about the origin.






Postulate 4.3 Rotation Postulate

A rotation is a rigid motion.

Graph  $\overline{RS}$  with endpoints R(1, -3) and S(2, -6) and its image after the composition.

**Reflection:** in the *y*-axis

Rotation: 90° about the origin



**3.** Graph  $\overline{RS}$  from Example 3. Perform the rotation first, followed by the reflection. Does the order of the transformations matter? Explain.

**4.** WHAT IF? In Example 3,  $\overline{RS}$  is reflected in the *x*-axis and rotated 180° about the origin. Graph  $\overline{RS}$  and its image after the composition.

**5.** Graph  $\overline{AB}$  with endpoints A(-4, 4) and B(-1, 7) and its image after the composition.

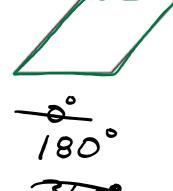
**Translation:**  $(x, y) \rightarrow (x - 2, y - 1)$ 

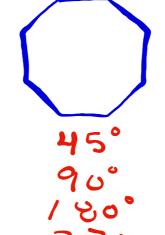
Rotation: 90° about the origin

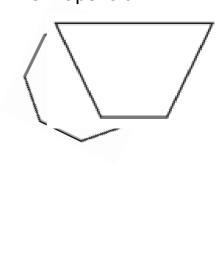
**6.** Graph  $\triangle TUV$  with vertices T(1, 2), U(3, 5), and V(6, 3) and its image after the composition.

Rotation: 180° about the origin

**Reflection:** in the *x*-axis

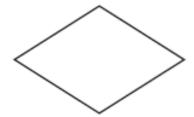

Does the figure have rotational symmetry? If so, describe any rotations that map the figure onto itself.


a. parallelogram




**b.** regular octagon



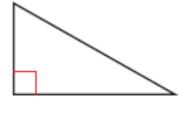








Determine whether the figure has rotational symmetry. If so, describe any rotations that map the figure onto itself.


7. rhombus



8. octagon



9. right triangle



Homework 4.3

pg194 #7-12, 21-24, 29 and 34